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Abstract.   A means of measuring machine intelligence is presented. The technique is
based on geometric procedures and works best on relative comparisons across different
entities, rather than absolute comparisons of intelligence.
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I. INTRODUCTION

     Defining, evaluating, and obtaining viable
metrics for the measurement of autonomy,
machine intelligence quotient (MIQ), or
intelligence, in general, is a nontrivial task [1-
9].    It is generally agreed that intelligence
must be a high dimensional vector involving
multiple attributes of a human or machine
(Meystel [1]).  Defining the relevant
dimensions is also not a trivial task and much
controversy exists.  Even the discussion on
how testing on intelligence is performed with
humans creates controversy on which mental
abilities constitute intelligence.  The relevant
issues include whether the IQ obtained, e.g.
by the Stanford-Binet Intelligence Scale or
the Wechsler Scales, are fair measures.
Additional controversy also exists that certain
less privileged racial, ethnic, or social groups
do not have fair representations on the test
questions pertinent to their living
environments.
     Albus [2] defines intelligence as having
many dimensions. He also recognizes degrees
or levels of intelligence.  Some of the
influencing parameters in describing features
of intelligence for unmanned ground vehicles
include, but are not limited to:
(1) The computational power and memory
capacity of the system’s brain (or computer),
(2)  The sophistication of the processes
the system employs for sensory processing,
world modeling, behavior generation, value
judgment, communication, and,

(3) The quality and quantity of
information and values the system has
stored in its memory.

The measure of intelligence is also predicated
on the success in solving problems,
anticipating the future, and acting so as to
maximize the likelihood of achieving goals.
Obviously intelligence is goal oriented and
related to success. The presumption is that
different levels of intelligence produce
dissimilar probabilities of success in the
accomplishment of specific missions.
     In studying autonomous systems [3], there
are numerous (analogous) systems that can be
examined for attributes both within and across
processes that relate to autonomy. Some of
these systems include living things (birds,
fish, insects), intelligent highway vehicle
systems, mobile robots, control of  satellites
in orbit, underwater vehicles systems,
helicopters, tanks, human-machine interfaces,
unmanned air vehicles, swarms of robots,  and
a host of  other processes.  In studying
unmanned air vehicle systems (UAVs) [8,10]
autonomy is desired since the goal is to
maximize the ratio of UAVs/operators for a
number of important reasons. The advantages
include the significant reduction in cost, the
elimination of the need to include a life
support system (significantly reducing fuel
and weight requirements),  decreased
vulnerability if the UAV is shot down or
captured, enhancing reliability and robustness
with multiple opportunities to achieve a
mission, as well as other important traits.
Again, in the design of UAVs, it is desired to



have a metric to compare within and across
different systems on the level of autonomy or
intelligence designed in the aircraft.
    It was pointed out in [4] that, at best, a
measure of machine intelligence (MIQ) is a
relative metric and it is difficult to have an
absolute measure. This paper will discuss a
relative means of determining  how to
contrast across different machines for
comparative intelligence or autonomy. The
goal is to have an objective measure to
demonstrate that one machine has higher or
lower degrees of intelligence or autonomy in
comparison to another machine. Thus the
designer can rate different machines in terms
of their relative MIQ and investigate trade-
offs between gain in MIQ versus cost and the
benefits derived. It is cautioned that MIQ is
very mission specific, and unless the mission
can be accomplished with the appropriate
level of success, then the machine may still
not be appropriate.   In other words, the
appropriate tool has to be able to perform the
given task. Success in a mission is the final
measure that demonstrates that a machine has
the appropriate MIQ for a given application.
To understand the metric introduced here,
some basics need to be reviewed and
discussed to better grasp how the measure of
MIQ was constructed herein.

II. Some Basic Definitions
     To understand the ensuing definition of
MIQ, some basic concepts need to be
reviewed. We present the fundamental
nomenclature via  key definitions.

Definition 1 – Convexity:
A subset A of Rn  is convex if, for any vectors
x and y in A and scalars r and s with r ≥ 0 and
s ≥ 0, r + s = 1, then every point r x + s y
remains in A. In other words, if we have a
convex set (2 dimensions) A with two points x
and y, then if we draw a line from the point x
to y, every point on the line remains inside the

Figure 1 – The Convex Set A of a Circle
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surface A.  Figure 1 illustrates a circle in
which the points x and y lie inside the circle.
Drawing a line from the point x to the point y
still remains inside the circle A.  Also, every
point along the line joining x to y also lies
within the set A and no point on the line is
outside the set A.    Other examples of convex
spaces in 3 dimensions include a cube, a
sphere, etc.  A cube is defined as follows:
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It is also worthwhile to look at a surface
which is not convex. Example 1 describes a
set of points, which is not convex.

Example 1–A set of points in a nonconvex set
The set A of points in R2 defined by:
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Figure 2 is a plot of the nonconvex surface A.
It is easily seen that a line cannot be drawn
between any two points x and y  in A and
have every point on the line joining the points
still lie in A. Thus the surface A in figure 2 is
a nonconvex surface. Sometimes it is
necessary to prove a surface is convex by the
definition of its constituent elements. The



following alternative definition is  useful for
this purpose.

Figure 2 – A Nonconvex Set A
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Alternative Definition of Convexity:
A function f(x) is convex if for all x, y and λ
such that:  0  ≤ λ ≤ 1,
   f(λ x + (1- λ) y)  ≤  λ f(x) + (1 - λ) f(y)    (3)

The next three definitions will prepare for the
appropriate definition of MIQ.  Definition 2
refers to the outer surface (Convex Hull) that
encloses the convex set.

Definition 2 – Convex Hull:
    The convex cover (Convex Hull) of a
convex set is what bounds the outside of the
convex set. For figure 1, it is the
circumference of the circle. For the cube of
equation (1), the Convex Hull is the six
surfaces of the cube. To define the Convex
Hull more formally:
Let B be any subset of Rn and CH(B) is the
convex hull of  B if it contains all the convex
combinations of the elements of B, i.e.

 CH(B) = { x : there are elements  x1, x2, …,
xn in B such that x is a convex combination of
all of the xi elements considered}

Hence the Convex Hull is the outside
bounding surface of the convex set. The next
definition generalizes this concept to multiple
dimensions. Polytopes have many definitions,

e.g. with respect to classes of polynomials
[11], with respect to matrices [12], and also
with reference to general convex-compact sets
[13].  Here the choice is made to use the term
polytope with respect to geometric figures.
For a set of points in Rn where n ≥ 2, the
concept of  convexity is now extended to
multiple dimensions.

Definition 3 – Polytope:
    Given the subset A of Rn  which is a
polytope if, for any vectors x and y in A and
scalars r and s with r ≥ 0 and s ≥ 0, r + s = 1,
then every point r x + s y  still remains in A.
This generalizes for n ≥ 2 and all points can
be connected in A. Figure 3 illustrates a
triangle as a 2 dimensional convex set and
figure 4 generalizes this result to 3
dimensions. The goal is to increase n to any
number greater than 2 and triangles or
geometric figures with vertices will be used in
each dimension.

Figure 3 – A Triangle as a 2-dimensional Polytope



Figure 4 – A Triangle Extended as a 3-dimensional Polytope

Definition 4 – MIQ as a Polytope:
    The prior definitions have provided some
valuable tools to help in the definition of a
measure of MIQ in multiaxes, as is necessary
since intelligence is such a multidimensional
process. There is a 3 step process in
developing this methodology.
Step 1: Consider a minimum of  3 attributes
for a 2 dimensional definition of MIQ.
Step 2: Generalize this result to 4 or more
attributes in this 2-dimensional (planar space).
In the two dimensional space, the map now
extrapolates with any number of features
necessary to complete the mission.
Step 3: The last step takes the generalization
to a third or higher dimension. In all cases all
the figures constructed are Convex Hulls or
polytopes. Thus comparisons can always be
made within any dimension involving two or
more machines to be considered.  To explain
this better, figure 5 illustrates the Step 1
process with the 3 attributes of intelligence
[2] being defined as: goals achieved (task
performance), uncertainty in the environment,
and sensors available. Figure 6 now

Figure 5 – First Definition of MIQ with 3 Axes (Intelligence Attributes)
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extrapolates the previous figure  to include a
total of 5 attributes in the planar dimension
with the addition of two more attributes of
intelligence selected including: actuators
controlled and a priori knowledge.  Finally
figure 7 generalizes to 3 dimensions with the
addition of three additional intelligence
attributes in the third dimension, including:
accuracy level, time efficiency, and energy

Figure 6 – Generalization of  Figure 5 to now Include 5 Attributes
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Figure 7 – Generalization of Figure 6 to 3 Dimensions With 8 Attributes.
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efficiency [9]. To this point, the process has
been an abstraction; in the next section a
comparison is made of relative examples to
illustrate how to use this methodology.

Methodology to Compare Across Machines
     To illustrate how to use the methodology,
four examples are considered with (presumed)
increasing  levels of intelligence (machine or
nonmachine). They include:

(1) A toaster.
(2) A washing machine with fuzzy logic

to detect quality of cleaning.
(3) An insect (ant).
(4) A human operator.

Due to the complexity of representation,
figure 8 portrays a comparison of the washing
machine with fuzzy logic to the toaster using
the simplified planar representation

Figure 8 – Comparison of a Toaster and Clothes Washer With Fuzzy Logic
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Figure 9 – Comparison of a Human, Ant and Toaster
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introduced in figure 5.  Obviously the more
intelligent machine is further displaced from
the origin and due to the convexity of the
polytope,  it is seen that, in general, the fuzzy
logic system appears to have greater machine
intelligence (area measure). In  figure 9, the
evaluation of MIQ is now made between the
mixture of living things and machines. The
comparison involves a human, an ant, and a
toaster. Here the relative hierarchy is
specified by the amount of area or volume
contained in each polytope.  Thus the
intelligence measure is very relative (not
absolute) to compare across living things and
machines. To summarize the results so far, the
following paradigm is suggested on how to
synthesize this MIQ metric:
Steps in Synthesizing the MIQ Paradigm:
(i) For the specific mission, define the axes of
the polytope to be relevant to the performance
of the mission under consideration (e.g. a
toaster cannot clean a rug, nor can a washing
machine toast a piece of bread).
(ii) Define the scales of each axes of the
polytope relevant to the mission of interest.
(iii)  Plot alternative machines on the same
axes.
(iv) The hypervolume resulting will provide a
relative (not absolute) comparison of the
efficacy of a particular machine to perform
certain missions.

     Recall there is no absolute standard
(however, an existing machine could be a



baseline for comparison purposes) and, at
best, the relevance of each machine to
perform a specific mission can be better
understood via this procedure.

III. Summary and Conclusions

     Using properties such as convexity and
relative measures of  machine intelligence, the
effectiveness to perform specific missions
under various conditions can be determined.
It is difficult to obtain an absolute measure of
MIQ but by comparison to baseline or
existing machines in use, there is some value
in the relative comparison. The results can be
extended to any level of complexity by
considering convex polytopes in a multiple
dimensional space.
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